The Impact of Hemoglobin Level on Risk of End-Organ Damage (EOD) among Patients with Sickle Cell Disease – A Large-Scale, Longitudinal Analysis

William B. Ershler, MD; Laura M. De Castro, MD, MHSc; Zahra Pakbaz, MD; Aaron Moynahan; Derek Weycker; Nhat Pham; Thomas E. Delea, MSIA; Irene Agodoa, MD; Ze Cong, PhD

1Inova Schar Cancer Institute, Fairfax, VA, USA; 2University of Pittsburgh / UPMC, Pittsburgh, PA, USA; 3University of California Irvine Chao Family Cancer Center, Orange, CA, USA; 4Policy Analysis Inc. (PAI), Brookline, MA, USA; 5Global Blood Therapeutics, South San Francisco, CA, USA

ASH 2020
Disclosures

William B. Ershler (presenting author)
• Membership on entity’s advisory committees: Global Blood Therapeutics, Novartis, Pharmacosmos
• Speaker bureau: Global Blood Therapeutics, Novartis

Laura M. De Castro
• Membership on entity’s advisory committees: Global Blood Therapeutics, Novartis, Forma Therapeutics, Glycomimetics

Zahra Pakbaz
• Membership on entity’s advisory committees: Amgen, Dova, Novartis
• Medical advisor and speaker: Terumo BCT
• Speaker bureau: Global Blood Therapeutics, Novartis

Aaron Moynahan
• Current employment: Policy Analysis Inc.
• Research funding: Global Blood Therapeutics, Novartis

Derek Weycker
• Current employment and equity holder: Policy Analysis Inc.
• Research funding: Global Blood Therapeutics, Novartis

Nhat Pham
• Current employment: Policy Analysis Inc.
• Research funding: Global Blood Therapeutics, Novartis

Thomas E. Delea
• Current employment and equity holder: Policy Analysis Inc.
• Research funding: Global Blood Therapeutics, Novartis

Irene Agodoa
• Current employment and current equity holder in a publicly traded company: Global Blood Therapeutics

Ze Cong
• Current employment and current equity holder in a publicly traded company: Global Blood Therapeutics
Anemia Affects Most Patients with SCD\(^1,2\)

SCD is an inherited, multifaceted anemia that is associated with lifelong morbidity and early mortality.\(^2\)

Low Hb levels have been correlated with EOD such as stroke, CKD, ESRD, and PH.\(^3\)

This study sought to estimate the relationship between Hb and the risk of EOD based on large-scale, longitudinal analyses of recent data in the US.

CKD, chronic kidney disease; EOD, end-organ damage; ESRD, end-stage renal disease; Hb, hemoglobin; PH, pulmonary hypertension; SCD, sickle cell disease.

Patients with SCD aged ≥12 years and ≥1 Hb level reported from January 1, 2013 to July 31, 2020, in the large, US-representative, provider-centric Symphony Health claims database were included.

Bivariate analyses of Hb levels and EOD were assessed using logistic GEE regression to account for clustering of observations at the patient level.

Multivariable logistic GEE regression was employed to evaluate the independent association between Hb levels and EOD, adjusting for patient demographics and other SCD complications.

Methods

• For each patient, Hb values were identified and included as separate observations
• EOD occurring during the follow-up period and the history period were assessed

Prior and New EOD Evaluation

History period
(Jan 1, 2012 to Hb test dates)
• History of EOD and other comorbid conditions

Follow-up period (1-year post test)
• Onset of new EOD, including stroke, CKD, ESRD, and PH

CKD, chronic kidney disease; EOD, end-organ damage; ESRD, end-stage renal disease; GEE, generalized estimating equations; Hb, hemoglobin; PH, pulmonary hypertension; SCD, sickle cell disease.
Higher Hb Levels Were Significantly Associated with Reduced Odds of Developing EOD

- A total of 17,034 patients with SCD aged ≥12 years were identified (mean age, 37.8 years; 36.9% male), contributing 44,555 observations of Hb levels (mean [SD], 9.7 [1.9] g/dL).

*P<0.05, †P<0.001 vs Hb <7 g/dL.
CKD, chronic kidney disease; EOD, end-organ damage; Hb, hemoglobin; PH, pulmonary hypertension; SCD, sickle cell disease.
Higher Hb Levels Remained Associated with Reduced Odds of Developing EOD After Controlling for Age, Gender, Insurance Type, and History of EOD and SCD Complications

*P<0.05, †P<0.01, ‡P<0.001 vs Hb <7 g/dL.

CKD, chronic kidney disease; EOD, end-organ damage; Hb, hemoglobin; PH, pulmonary hypertension; SCD, sickle cell disease.
Increased Age, Public Insurance, Concurrent EOD, and SCD-Related Complications Were All Associated with Increased Odds of Developing EOD

Multivariable analysis

<table>
<thead>
<tr>
<th>Other variables</th>
<th>Any EOD</th>
<th>CKD</th>
<th>PH</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, female (male=1)</td>
<td>0.81†</td>
<td>0.67†</td>
<td>0.83*</td>
<td>1.29†</td>
</tr>
<tr>
<td>Age, years (12 to 17 years=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 to 34</td>
<td>3.60‡</td>
<td>4.56‡</td>
<td>10.49‡</td>
<td>1.21</td>
</tr>
<tr>
<td>35 to 49</td>
<td>5.29‡</td>
<td>6.72‡</td>
<td>14.56‡</td>
<td>1.78‡</td>
</tr>
<tr>
<td>50 to 64</td>
<td>7.77‡</td>
<td>12.80‡</td>
<td>17.28‡</td>
<td>1.98‡</td>
</tr>
<tr>
<td>≥65</td>
<td>10.36‡</td>
<td>19.07‡</td>
<td>16.21‡</td>
<td>2.77‡</td>
</tr>
<tr>
<td>Insurance (commercial=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicare and Medicaid</td>
<td>1.83‡</td>
<td>1.72‡</td>
<td>1.58‡</td>
<td>2.66‡</td>
</tr>
<tr>
<td>Medicare</td>
<td>1.49‡</td>
<td>1.68‡</td>
<td>1.03</td>
<td>1.60‡</td>
</tr>
<tr>
<td>Medicaid</td>
<td>1.62‡</td>
<td>1.83‡</td>
<td>1.07</td>
<td>2.00‡</td>
</tr>
</tbody>
</table>

Other variables

<table>
<thead>
<tr>
<th>Other variables</th>
<th>Any EOD</th>
<th>CKD</th>
<th>PH</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent EOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CKD</td>
<td>0.49‡</td>
<td>N/A</td>
<td>1.31†</td>
<td>1.32*</td>
</tr>
<tr>
<td>PH</td>
<td>1.15</td>
<td>1.67‡</td>
<td>N/A</td>
<td>0.93</td>
</tr>
<tr>
<td>Stroke</td>
<td>0.95</td>
<td>1.30*</td>
<td>1.10</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SCD-related complications (no history of complication=1)

<table>
<thead>
<tr>
<th>Other variables</th>
<th>Any EOD</th>
<th>CKD</th>
<th>PH</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular disease</td>
<td>1.82‡</td>
<td>2.01‡</td>
<td>1.92‡</td>
<td>1.66‡</td>
</tr>
<tr>
<td>Hepatic disorders</td>
<td>1.22†</td>
<td>N/A</td>
<td>N/A</td>
<td>1.59‡</td>
</tr>
<tr>
<td>Pulmonary disorders</td>
<td>1.30‡</td>
<td>1.20*</td>
<td>1.56‡</td>
<td>N/A</td>
</tr>
<tr>
<td>Other disorders</td>
<td>1.39‡</td>
<td>1.17*</td>
<td>1.65‡</td>
<td>1.74‡</td>
</tr>
</tbody>
</table>

*P<0.05; †P<0.01; ‡P<0.001.
N/A denotes variables that were not relevant or did not meet stepwise regression criteria (P<0.10).
CKD, chronic kidney disease; EOD, end-organ damage; PH, pulmonary hypertension; SCD, sickle cell disease.
Conclusions

In this large-scale, longitudinal analysis, a significant reduction in the risk of new EOD was observed among SCD patients with higher Hb levels.

History of any EOD was significantly correlated with presence of new EOD.

New SCD treatments that can increase Hb levels can potentially offer clinical and economic value.

EOD, end-organ damage; Hb, hemoglobin; SCD, sickle cell disease.
Acknowledgments

- This study was supported by Global Blood Therapeutics.

Nelson Jen, PhD (Healthcare Consultancy Group, with funding from Global Blood Therapeutics) provided editorial assistance.