GBT440, a Novel HbS Polymerization Inhibitor, Increases Hb Oxygen Affinity and Results in a Rapid Improvement in Hemolysis and Anemia

Josh Lehrer-Graiwer, Clair Hemmaway, Jo Howard, Paul Telfer, Mark Layton, Moji Awojobi, John Porter, Marilyn Roberts-Harewood, Timothy Mant, Kobe Dufu, Athiwat Hutchaleelaha, Donna Oksenberg, Mira Patel, Margaret Tonda and Eleanor Ramos

1Global Blood Therapeutics, South San Francisco, CA, 2Queen's Hospital, Romford, 3Guy's and St. Thomas NHS Trust, London, UK, 4The Royal London Hospital, Imperial College Healthcare NHS Trust, 5Kings College Hospital, London, UK, 6University College London Hospital, London, UK, 7North Middlesex University Hospital, London UK, 8Quintiles Drug Research Unit of Guy's Hospital, London, UK

INTRODUCTION

- Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β-globin gene leading to abnormal hemoglobin production (HbS).
- The pathophysiology mechanism involves the polymerisation of deoxygenated HbS resulting in the sickling of red blood cells (RBC), hemolytic anemia and vaso-occlusion.
- Management strategies have evolved very slowly, and treatment of SCD remains a serious unmet medical need with progressive end-organ damage, life-long pain, disability, and early death despite standard of care therapies.

RESULTS

- **Baseline Characteristics and Subject Disposition**
 - SCF subjects who received multiple doses of GBT440
 - Median increase in Hb of ~1.1 g/dL

- **Efficacy: 28-day Cohort Data**
 - Unassessed bilirubin levels:
 - <1 mg/dL: 28%, 6.7% (GBT440), 2.3% (Placebo)
 - >1 mg/dL: 22%, 10.2% (GBT440), 9.6% (Placebo)

- **Efficacy Summary**
 - Hb response variable: bone marrow compartment is dynamic and has not reached equilibrium
 - 30-day treatment
 - Profound and rapid reduction in hemolysis and sickle cell sickle

- **Pharmacokinetics and Pharmacodynamics at Steady State**
 - Dose proportional increase in Hb
 - Hemoglobin modification is proportional to dose

CONCLUSIONS

- GBT440 treatment leads to a rapid, profound, and durable reduction in hemolysis and sickle cells in 100% of SCD patients dosed to date
- Decrease in bilirubin
- Reduction in reticulocytosis
- Stabilization and increase in median hemoglobin >1 g/dL
- Approximately 70% reduction in irreversible sickled cells
- Dose dependent increase in oxygen affinity as measured by PSO (left shifting to normal-range)

Safety Data

- No evidence of tissue hypoxia with GBT440 treatment

GBT440 Clinical Hypothesis: Increase in Hb-O2 affinity inhibits HbS polymerization

GBT440-001: STUDY DESIGN

- Randomized, double-blind, Phase 1B Controlled Study in Adult HbS Patients

GBT440-003

- Part A - Single Dose
 - 60 mg (n=4), 120 mg (n=16), 180 mg (n=16), 240 mg (n=16), 300 mg (n=16), 360 mg (n=16), 480 mg (n=16)

- Part B - Multiple Doses (25 and 28 days)
 - 60 mg (n=4), 120 mg (n=16), 180 mg (n=16), 240 mg (n=16), 300 mg (n=16), 360 mg (n=16), 480 mg (n=16)

- Part C - Multiple Doses (30 days)
 - 60 mg (n=4), 120 mg (n=16), 180 mg (n=16), 240 mg (n=16), 300 mg (n=16), 360 mg (n=16), 480 mg (n=16)

No Evidence of Tissue Hypoxia with GBT440 Treatment

To access the poster digitally, please use the following QR code

©2016 Global Blood Therapeutics