The Pharmacokinetics (PK) of GBT440 are Similar in Adolescents and Adults with Sickle Cell Disease (SCD)

Carla Washington,1 Rada Savić,2 Adelte Inatī,3 Jeremie Estepp,4 Gerald Woods,5 Erica Fong,4 Attiwal Hutchalekhala,1 Margaret Tondal,6 Ganesh Balataraman7 and Josh Lehrer-Graiwer8

1Global Blood Therapeutics, South San Francisco, CA, USA; 2University of California, San Francisco, San Francisco, CA, 3Rafic Hariri University Hospital, Beirut, 4St. Jude Children’s Research Hospital, Memphis, TN 5Children’s Mercy Hospital, Kansas City, MO

INTRODUCTION

• Sickle cell disease (SCD) is a genetic disorder resulting in the production of mutated hemoglobin (HbS) that upon deoxygenation, polymerize and obstruct small blood vessels (RBCs) resulting in sickled RBCs, hemolysis and vaso-occlusion.
• SCD is a congenital hemoglobinopathy with disease beginning in childhood, approximately 10% of SCD prevalence is in the pediatric population.
• GBT440 is an oral, once-daily therapy that modulates hemoglobin (Hb) affinity for oxygen, thereby inhibiting polymerization in SCD (Figure 1).

Figure 1. GBT440: Designed to Bind Hemoglobin with High Selectivity

• Reversible, constant binding to H-terminus of hemoglobin α chain • stabilizes sickle Hb conformation
• Preserves functions with high selectivity for hemoglobin
• 3.5% elasticity of GBT440 to Hb to balance binding
• Protein, dose-dependent increase in Hb-O2 affinity.

METHODS

• Adult PPK Model
• Adolescents (12 to 17 years) GBT440 600 mg
• Children (≤11 years) GBT440 600 mg
• Part A – Single Oral Dose
• Adolescents (12 to 17 years) 900 mg daily for 24 weeks
• Adolescents (12 to 17 years) 1500 mg daily for 24 weeks
• Part B – Multiple Oral Doses

• Key Inclusion Criteria
CV

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age (years)</th>
<th>Weight (kg)</th>
<th>SCD (HbSS)</th>
<th>Current Hydroxyurea/Hydroxycarbamide Use</th>
<th>Part A</th>
<th>Part B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>12-17</td>
<td>> 40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Female</td>
<td>12-17</td>
<td>> 40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

• Secondary Objectives
• To support dose selection in ongoing studies evaluating safety and efficacy of GBT440 in pediatric patients
• To select doses for pediatrics (6 to 17 years) based on PK data and population PK (PPK) modeling to achieve similar exposures

RESULTS

• Safety Results
GBT440 was well tolerated following a single oral dose of GBT440 600 mg
• No serious or severe adverse events related to study drug were observed
• Two treatment-related Grade 1 adverse events (fatigue and nausea) were reported

• PK Results
• Following a single oral dose of GBT440: maximum concentrations (Cmax) in whole blood and plasma were reached at 2 and 2 hours, respectively (Table 3). GBT440 concentrations decreased in a monophasic manner, with a half-life (∼116 hours) in adults of 12 hours and plasma of 43.5 hours (Figure 4 and Table 2).

• In adolescents, higher PK plasma concentrations was observed which is consistent with high specificity for binding to hemoglobin and data observed in adults
• Based on dose-normalization and population PK of GBT440 in adolescents following a single dose of 400 mg were similar to those expected in adults (Figure 3).

• Daily doses of 900 mg and 1500 mg, which are currently being evaluated in the pivotal Phase 3 HOPE study were selected to be evaluated in adolescents in Part 3 of this study and exposures are expected to be similar to those observed in adults (Figure 4).

• Table 2. GBT440 Whole Blood and Plasma Non-compartmental PK Parameters Following a Single Oral Dose of GBT440 600 mg in Adolescents

<table>
<thead>
<tr>
<th>PK Parameter</th>
<th>GBT440 in Whole Blood</th>
<th>GBT440 in Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (ng/mL)</td>
<td>24.2 (47.7%)</td>
<td>2.08 (32.5%)</td>
</tr>
<tr>
<td>Tmax (hr)</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>AUC (ng/hr/L)</td>
<td>146.1 (43.85%)</td>
<td>11.4 (9.1%)</td>
</tr>
<tr>
<td>T1/2 (hr)</td>
<td>32.3 (6.1)</td>
<td>43.9 ± 5.31</td>
</tr>
</tbody>
</table>

AUC = area under the time of the last quantifiable concentration; Cmax = maximum observed blood concentration; Tmax = average maximum; T1/2 = the time required for concentration to reduce by 1/2 in adults; all values reported as geometric means (percent RSE) ± median; values expressed as arithmetic means ± 95% CI.

• The PK model parameter estimates suggest that whole blood exposures are greater than 1000 ng/mL for ∼24 hours and are associated with a high specificity for hemoglobin and data observed in adults (Figure 3).

• The authors wish to thank all of the participants, families, caregivers, research nurses, study coordinators and support staff who contributed to this study.

ACKNOWLEDGEMENTS

• The authors wish to thank all of the participants, families, caregivers, research nurses, study coordinators and support staff who contributed to this study.

Michelle Green, PhD, Ganesh Balaratnam

5 University of California, San Francisco, San Francisco, CA, 6St. Jude Children’s Research Hospital, Memphis, TN 7Children’s Mercy Hospital, Kansas City, MO

© 2017 Global Blood Therapeutics

Figure 2. GBT440 600 mg Single Oral Dose Study Design

Part A – Single Oral Dose
• Adolescents (12 to 17 years) GBT440 600 mg
• Children (≤11 years) GBT440 600 mg

Part B – Multiple Oral Doses
• Adolescents (12 to 17 years) 900 mg daily for 24 weeks
• Adolescents (12 to 17 years) 1500 mg daily for 24 weeks

Key Inclusion Criteria

- Male or female age 6 to 17 with sickle cell disease in prior year; n (%)
- No splenic sequestration crisis in prior year; n (%)
- No history of stroke or two TCD measurements ≥200 cm/sec
- On hydroxyurea at the time of last quantifiable concentration

Table 3. PK Parameter Estimates for GBT440 in Adults and Adolescents with SCD

<table>
<thead>
<tr>
<th>PK Parameter</th>
<th>GBT440 in Whole Blood</th>
<th>GBT440 in Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL/F (L/hr)</td>
<td>0.45 (13.7%)</td>
<td>0.75 (47.1%)</td>
</tr>
<tr>
<td>V/F (L)</td>
<td>21.4 (6.5)</td>
<td>19.1 (12.7)</td>
</tr>
<tr>
<td>Ka (L/hr)</td>
<td>0.34 (6.3)</td>
<td>0.19 (38.3)</td>
</tr>
<tr>
<td>T1/2 (hr)</td>
<td>3.45</td>
<td>3.64</td>
</tr>
</tbody>
</table>

CL/F = apparent clearance; V/F = apparent volume of distribution; Ka = absorption rate constant, T1/2 = half-life; all values reported as geometric means (percent RSE) ± median; values expressed as arithmetic means ± 95% CI.

Table 4. Comparison of Adult (95% Simulated Prediction Interval, in blue) and Adolescent (Observed, black lines) GBT440 Whole Blood Exposures Following a Single Oral Dose of GBT440 600 mg

The external model validation shown above indicates good agreement between observed and simulated adult PK profiles following a single dose of GBT440 600 mg.

Figure 3a. Goodness of Fit Plot and Visual Predictive Check (VPC) for the Adult PK Model

• The PK model parameter estimates for GBT440 in adults with SCD was best described by a two-compartment model with first-order absorption and first-order elimination. Key model parameters are summarized in Table 2.

Figure 3b. Goodness of Fit Plot and Visual Predictive Check (VPC) for the Pediatric PK Model

• The PK model included estimates of between-subject variability on apparent clearance (CL/F) and apparent volume (V/F). A combined proportional plus additive residual error model was used.

Figure 4. GBT440 Whole Blood and Plasma Concentration-Time Profiles Following a Single Oral Dose of GBT440 600 mg in Adults

• The prediction-corrected visual predictive check (VPC) and goodness of fit diagnostic plots for the whole blood model indicate that the model describes the data adequately (Figure 3).